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In nonintegrable Hamiltonian systems, energy initially localized in a few degrees of freedom tends to
disperse through nonlinear couplings. We analyze such processes in systems of many degrees of freedom. As
a complement to the well-known Arnold diffusion, which describes energy diffusion by chaotic motion near
separatrices, our analysis treats another universal case: coupled small oscillations near stable equilibrium
points. Because we are concerned with the low-energy regime, where the nonlinearity of the unperturbed
Hamiltonian is negligibly small, existing theories of Arnold diffusion cannot apply. Using probability theories
we show that resonances of small detuning, which are ubiquitous in systems of many degrees of freedom, make
energy diffusion possible. These resonances are the cause of energy equipartition in the low-energy limit. From
our analysis, simple analytic equations that relate the energy, the degrees of freedom, the strength of nonlinear
coupling, and the time scale for equipartition emerge naturally. These equations reproduce results from large-
scale numerical simulations with remarkable accuracy.@S1063-651X~96!04311-5#

PACS number~s!: 02.50.Fz, 02.50.Kd, 05.20.2y, 05.45.1b

I. INTRODUCTION

Since Poincare´ showed that most nonlinear Hamiltonian
systems are nonintegrable, i.e., they do not possess any con-
stant of motion other than the total energy@1#, it has become
apparent that in treating the vast variety of nonlinear sys-
tems, studying the general characteristics can be more impor-
tant than searching for particular solutions of the equations
of motion. This is especially true for systems of many de-
grees of freedom, because in such systems the solutions are
most likely too complicated to offer digestible information.

A powerful technique for extracting the general character-
istics of complex dynamic systems is statistical analysis.
Consider the general Hamiltonian of near-integrable systems
H(p,q)5H0(p,q)1eH1(p,q), whereH0 is integrable while
H1 not ande is a parameter!1. It is more convenient to
describe the system in terms of the action and angle variables
(I ,u) of H0, so thatH0 depends only on the action variables
I , i.e.,H(I ,u)5H0(I )1eH1(I ,u). In analyzing the statistical
behavior of a nonlinear system, one is concerned more with
the action variables than the angle variables. This is because
the angle variables cycle rapidly between 0 and 2p in time
scales too small for much physics to happen. In contrast,
each action variable, which is a one-to-one mapping of the
energy of a degree of freedom, changes slowly under the
influence ofeH1. The distribution of the action variables and
its evolution in time, referred to as the energy redistribution
process, is the major concern of this paper.

Before Kolmogorov, Arnold, and Moser proved the exist-
ence of invariant trajectories in near-integrable systems and
that the invariant trajectories may constitute a finite measure
of the phase space@2–5#, it was generally assumed that en-
ergy redistribution through nonlinear couplings would even-
tually bring a nonintegrable system to states of approximate
equipartition. A well-known numerical experiment by Fermi,
Pasta, and Ulam was intended to show such scenarios@6#.

Among many important facts, the Kolmogorov-Arnold-
Moser~KAM ! theorem shows that energy redistribution does
not always occur in nonintegrable systems. Redistribution is
possible only when the theorem is not valid, namely, when
the nonintegrable part of the Hamiltonian is sufficiently large
or when the system is sufficiently close to resonances. By
investigating the conditions under which the KAM theorem
breaks down, one can obtain better insight into the energy
redistribution process.

Resonances are known to enhance the energy transfer
among coupled degrees of freedom. Parametric oscillation in
nonlinear optics@7# and Fermi resonances in molecular dy-
namics @8# are well-known examples. Consider again
the general near-integrable HamiltonianH(I ,u)
5H0(I )1eH1(I ,u), where I5(I 1 ,I 2 , . . . ,I N) and
u5(u1 ,u2 , . . . ,uN) are the action and angle variables, re-
spectively, andN is the number of degrees of free-
dom. In general,H1 can be written in terms of its
Fourier components asH15(mVm(I )cos(m•u), where
m5(m1 ,m2 , . . . ,mN) is an array of integers. A resonance
exists if the angular frequenciesv5(v1 ,v2 , . . . ,vN),
where v i[]H0 /]I i , satisfies m•v[( i51

N miv i50 for
somem in the expansion ofH1. The quantityDvm[m•v is
called the resonance detuning. IfH0 is not linear, thenv
depends onI . Resonance conditions are satisfied for the val-
ues of I on the intersections of the resonance surfaces
m•v(I )50 and the energy surfaceH(I ,u)5 const. Such
resonances form a weblike structure known as the Arnold
web. Although the Arnold web may constitute only a small
part of the phase space, it is known that forN>3 initially
localized energy can diffuse along the stochastic layers of the
interconnected resonances. The phenomenon is known as the
Arnold diffusion @9#. Under the moderate nonlinearity con-
dition e!a!(1/e), wherea[(I /v)(dv/dI) represents the
nonlinearity ofH0, Chirikov was able to estimate the rate of
Arnold diffusion along the so-called guiding resonance by
considering the effect of a dominant ‘‘layer resonance’’ and
other small ‘‘driving resonances’’@10#. One of the important*Author to whom correspondence should be addressed.
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conclusions of Ref.@10# is that the diffusion rate is propor-
tional to exp(2cuDvmu/Ae), meaning that when the pertur-
bation is very small, the diffusion is effectively frozen. How-
ever, in a recent paper Chirikov and Vecheslavov proposed a
much faster diffusion mechanism by considering the relation
between high-order perturbation terms and resonance detun-
ings @11#.

In Arnold diffusion energy redistribution proceeds along
the stochastic layers near the separatrices by chaotic motion.
The process cannot occur in the low-energy limit because it
takes a significant amount of energy to reach the separatrices.
Moreover, in the low-energy limit the nonlinear part ofH0
becomes negligible. In other words,H0 is effectively linear.
In such cases Chirikov’s method cannot be applied because
the conditiona@e is not satisfied. How energy redistribu-
tion occurs in the low-energy limit remains unclear.

Energy redistribution is intimately related to the equipar-
tition principle in statistical mechanics. Even if one has not
been bothered by the KAM theorem when thinking about the
equipartition principle, there is still the problem of the time
scale for equipartition. In statistical mechanics the concept of
ergodicity is defined in thet→` limit. But in our practical
world one cannot wait fort→`. It is important to know how
long it takes for a nonintegrable system to reach equiparti-
tion, if that will ever occur.

In the low-energy limit the effect of nonlinear perturba-
tion is small, hence the only way to walk around the KAM
theorem is by going through resonances. As mentioned
above, in the low-energy limitH0 is effectively linear and
v i are constants. The chance of having exact resonances
(m•v50) is small except for those imposed by symmetry
requirements. Although given any set ofv one can always
find anm to makem•v arbitrarily small, the components of
suchm are often so large that the corresponding perturbation
Vm(I )cos(m•u) does not exist or is negligibly small. There-
fore one should focus the attention on how far the system is
away from resonances, instead of the existence of exact reso-
nances. As an example, one of the authors~J. W.! has taken
such an approach to show that the different behaviors of
intramolecular vibrational energy redistribution in CF2Cl 2
and SF6 can be explained by their significant difference in
the number of low-order~small-mi) resonances of small de-
tuning @12#. One may ask the following: Given a group of
dominant low-order resonances, are the resonance detunings
sufficiently small to cause energy redistribution? If yes, how
fast is the process? Without a detailed knowledge of the dy-
namics of the system, it seems difficult to answer such ques-
tions. Yet whenN is sufficiently large, due to the large num-
ber of frequency combinations, the statistics of the resonance
detunings dictates the typical behavior of the system. There-
fore, a natural approach is to incorporate the statistics of
resonance detunings into the standard perturbation theory.
As we shall see, such an approach unveils not only the dy-
namical origin of the equipartition principle, but also its va-
lidity boundaries and the time scale for reaching equiparti-
tion.

In this paper we study the energy redistribution process in
the low-energy limit by analyzing the role of resonance de-
tunings. Our model system is a linearH0 of largeN per-
turbed by a small nonlineareH1. Physically it represents
small-amplitude harmonic oscillations near stable equilib-

rium points perturbed by weak nonlinear couplings. The sys-
tem has many correspondences in the real world.

In Sec. II we show that if the lower bound of resonances
detuningsuDvumin is not small, energy redistribution can be
bounded to a near neighborhood of the initial point. In con-
trast, if uDvumin is sufficiently small, which is likely the case
whenN is sufficiently large, we show that the energy redis-
tribution resembles the diffusion process. The diffusion rate
is proportional toe2 times the probability density of near-
zero detuning. In Sec. III we discuss how the resonance de-
tunings scale withN. The scaling relation reveals how im-
probable that energy redistribution in a system of largeN is
bounded. The result shows that resonances of small detuning
omnipresent in systems of largeN are the cause of equipar-
tition in the low-energy limit. In Sec. IV we present our
analysis of the time scale for equipartition and compare our
estimation with results from recent large-scale numerical
simulations. Without any fitting parameter, our analytical ex-
pressions reproduce results from two independent works.
The paper is concluded in Sec. V with a discussion.

II. ROLE OF RESONANCE DETUNING
IN ENERGY DIFFUSION

In this section we investigate the evolution of the action
variables in an ensemble of the model systems. To facilitate
the discussion and the comparison with established numeri-
cal experiments, we use the Fermi-Pasta-Ulam~FPU! b
model and thef4 model as examples. Because the analysis
is not model dependent, the results we obtained can be ex-
tended to other Hamiltonians by scaling the relevant param-
eters.

The Hamiltonians of the FPUb model and thef4 model
are described in detail in Appendix A. Both models represent
strings made of discrete mass and spring units. Each mass-
spring unit forms a nonlinear oscillator that couples to its
neighbors. The Hamiltonians have the form

H~ I ,u!5(
i51

N

v i I i1e(
m

Vm~ I !cos~m•u!, ~2.1!

where v i are constants, $m%5$(m1 , . . . ,mN):mi

PZ,( i51
N umi u<4%, and the number of the elements in$m% is

N($m%)524N4 ~see Appendix A!. The equation of motion
of the action variables is

İ i52
]H

]u i
5e(

m
miVm~ I !sin~m•u!. ~2.2!

Substitutingu i5v i t1u i
01O(e) into Eq. ~2.2!, one has

İ i5e(
m

miVm~ I !sin~Dvmt1um
0 !1O~e2!, ~2.3!

whereDvm[( i51
N miv i represent the detunings of the reso-

nances andum
0 [( i51

N miu i
0 represent the initial conditions of

the angle variables. We calculate the change ofI i during a
periodDT by integrating Eq.~2.3! from 0 toDT. The length
of DT is chosen to be sufficiently short so thatVm(I ) do not
change significantly duringDT, yet much longer than the
periods of the angle variables. For sufficiently smalle, I
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evolves much slower thanu, such choices ofDT are always
possible. Now that the change ofVm(I ) is negligible during
DT,

DI i'E
0

DT

e(
m

miVm~ I !sin~Dvmt1um
0 !dt

'2e(
m

mi

Vm~ I !

Dvm
$@cos~DvmDT!21#cos~um

0 !

2sin~DvmDT!sin~um
0 !%. ~2.4!

By averaging over the initial conditionsu i
0 , one obtains

^DI i
2&, the average ofDI i

2 in a microcanonical ensemble,

^DI i
2&5

1

2
e2(

m
mi

2
Vm
2 ~ I !

~Dvm!2

3$@cos~DvmDT!21#21sin2~DvmDT!%

5e2(
m

mi
2Vm

2 ~ I !
12cos~DvmDT!

~Dvm!2
. ~2.5!

In both the FPUb model and thef4 model each reso-
nance detuningDvm is a linear sum of at most fourv i
because there are at most four nonzero integers inm. We
may divide $m% into two groups:~i! $m8%5$m: with four
nonzeromi%, N($m8%)52434!3C4

N and ~ii ! $m9%5$m:
with at most three nonzero mi%, N($m9%)
5243N422434!3C4

N . Because we are interested in sys-
tems of largeN, where N($m8%) is much larger than
N($m9%), the major contribution tôDI i

2& is from $m8%, that
is,

^DI i
2&'e2 (

mP$m8%

mi
2Vm

2 ~ I ! f ~Dvm ,DT!, ~2.6!

where

f ~Dvm ,DT![
12cos~DvmDT!

~Dvm!2
. ~2.7!

FormP$m8%, ( i51
N mi

254. One has

^uDI u2&[(
i51

N

^DI i
2&'4e2 (

mP$m8%

Vm
2 ~ I ! f ~Dvm ,DT!.

~2.8!

In systems of many degrees of freedom, the number of
possiblem is very large, hence there are many different
Dvm . Because we are interested in the general statistical
behavior of such systems, we may describe Eq.~2.8! in terms
of the distributions ofVm andDvm . BecauseDvm is deter-
mined byv i from the unperturbed HamiltonianH0, whereas
Vm by the nonlinear perturbationH1, it is reasonable to as-
sume that in general the distributions ofVm andDvm are
uncorrelated. LettingP(Dvm) be the distribution ofDvm ,
one has

^uDI u2&'4e2S (
mP$m8%

Vm
2 ~ I !D

3E
uDvumin<uxu<uDvumax

f ~x,DT!P~x!dx, ~2.9!

whereuDvumin ,uDvumax are the bounds ofuDvmu.
In what follows we shall further reduce Eq.~2.9! into a

form in which the role ofDvm in the energy redistribution
process is clearly displayed. By analyzing the integral in Eq.
~2.9!, we shall show that resonances with small detunings
play the dominant roles in the energy redistribution process.
Let P andV be the height and width ofP(x), respectively,
and assume thatP(x) is well behaved such that

uP~k!~x!u<PS c1V D k ~2.10!

holds for some constantc1'O(1), where P(k)(x) is the
kth derivative ofP(x). As an example,c151/A2 for the
Gaussian distribution (1/A2pV)exp(2x2/2V2). To simplify
the integral in Eq.~2.9! let us separate the range ofx into two
parts: uDvumin<uxu<V/c1 and V/c1<uxu<uDvumax. For
uxu<V/c1, expanding P(x) in series and noting that
f (x,DT) is an even function ofx, one obtains

E
uDvumin<uxu<uDvumax

f ~x,DT!P~x!dx

5E
uDvumin<uxu<V/c1

f ~x,DT!F (
k50

`
P~k!~0!

k!
xkG

1E
V/c1<uxu<uDvumax

f ~x,DT!P~x!dx

52E
uDvumin

V/c1
f ~x,DT!FP~0!1 (

k51

`
P~2k!~0!

~2k!!
x2kGdx

1E
V/c1<uxu<uDvumax

f ~x,DT!P~x!dx

52E
uDvumin

`

f ~x,DT!P~0!dx22E
V/c1

`

f ~x,DT!P~0!dx

12E
uDvumin

V/c1
f ~x,DT!F (

k51

`
P~2k!~0!

~2k!!
x2kGdx

1E
V/c1<uxu<uDvumax

f ~x,DT!P~x!dx. ~2.11!

Letting F represent the first term andG the sum of the last
three terms in Eq.~2.11!, Eq. ~2.9! becomes

^uDI u2&'4S e2 (
mP$m8%

Vm
2 ~ I !D ~F1G!. ~2.12!

Define

F~x![xE
x

`12cosu

u2
du. ~2.13!
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Then

F52P~0!DTE
uDvuminDT

` 12cosu

u2
du

5
2P~0!

uDvumin
F~ uDvuminDT!. ~2.14!

In Fig. 1 we plot the functionF(x). It can be seen that
F(x) is bounded by its maximumF(x0),1.4 and for
x,x0 the function increases monotonically withx. When
x!1

F~x!'xE
0

`12cosu

u2
du5

p

2
x. ~2.15!

Using Eq.~2.10!, one can show that

uGu<12c1P/V. ~2.16!

The proof is given in Appendix B. These properties ofF and
G will be used in the following analysis.

If uDvumin is not small, the energy could be bounded to a
near neighborhood of the initial pointI . The condition for
energy localization is^uDI u&/uI u!1 for all time, where
^uDI u& is a simplified notation ofA^uDI u2&. From Eqs.~2.14!
and ~2.16!

uFu1uGu<
2PF~x0!

uDvumin
1
12c1P

V
, ~2.17!

where F(x0),1.4 and 1/V,1/uDvumin . From Eqs.~2.12!
and~2.17! one can see there exists a constantc2 of order 10
such that̂ uDI u&/uI u is bounded by

B5

Ac2S e2 (
mP$m8%

Vm
2 ~ I !D P/uDvumin

uI u
. ~2.18!

Although Eq.~2.12! holds only for a periodDT during which
the change ofVm(I ) is negligible, if uDvumin is sufficiently
large or the perturbatione2(Vm

2 is sufficiently small, such

that B!1, then the average fractional change ofVm(I ),
which is proportional tô uDI u&/uI u, stays negligible for arbi-
trarily long DT. In this case the energy is localized, as ex-
pected from the KAM theorem.

In Sec. III we show thatuDvumin decreases rapidly with
increasingN. Hence, for largeN, the energy will not be
bounded in a small neighborhood of the initial point. If
uDvuminDT!1, from Eq.~2.15!

F'
2P~0!

uDvumin

p

2
~ uDvuminDT!5pP~0!DT. ~2.19!

In Appendix B we show thatpP(0)>P, whereas
uGu<12c1P/V. If e and uDvumin are both sufficiently small
we may chooseDT@12c1 /V without violating the condi-
tions that the change ofVm(I ) is negligible duringDT and
uDvuminDT!1. ThenG in Eq. ~2.12! can be neglected and

^uDI u2&'4pS e2 (
mP$m8%

Vm
2 ~ I !D P~0!DT. ~2.20!

Equation~2.20! shows that when the number of degrees of
freedomN is large, under suitable ‘‘coarse graining’’~choice
of DT), the energy redistribution resembles a diffusion~ran-
dom walk! process. TheI -dependent ‘‘diffusion rate’’

D54pS e2 (
mP$m8%

Vm
2 ~ I !D P~0! ~2.21!

is independent ofuDvumin . From the form ofVm(I ) de-
scribed in Eq.~A25! it can be seen that the diffusion rate is
never zero except at the phase space boundary whereI i50
for somei . From Eq.~2.3! it can be seen that at this bound-
ary İ i50 the diffusion becomes limited in the directions per-
pendicular to thei axis in the phase space.

Equation ~2.20! holds under the condition that during
DT the change ofVm(I ) is negligible or, equivalently,
^uDI u&/uI u!1. This condition can be used to estimate the
upper bound ofueH1u/H0 for Eq. ~2.20! to hold. For simplic-
ity let us require that̂uDI u&/uI u<c3, wherec3 is of the order
0.1. BecauseDT@12c1 /V and ^uDI u2&5DDT, whereD is
the diffusion rate in Eq.~2.21!,

A12c1
V

!ADT<
c3uI u

^uDI u&
ADT'

c3uI u

AD
. ~2.22!

To carry out the estimation, we replaceuI u by its average
uI u, which is approximatelyANIav2 , whereI av is the average
action per degree of freedom, and relateuI u to H0 andD to
H1. BecauseH0 is approximatelyNvavI av, wherevav is the
average value ofv i ,

uI u'
H0

ANvav
. ~2.23!

Becausee2(Vm
2 is of the order 2e2H1

2 ,

D'8pe2H1
2P~0!. ~2.24!

FIG. 1. Shape ofF(x).
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With c1'O(1), c3'O(0.1),pP(0)>P, and the probability
normalization conditionPV'1, Eqs.~2.22!–~2.24! yield

ueH1u
H0

!
0.01V

vavAN
. ~2.25!

This condition defines how weak the perturbation strength
ueH1u/H0 has to be for Eq.~2.20! to be valid.

III. SCALING RELATIONS BETWEEN zDvzmin AND N

It was shown in the preceding section that the nature of
the energy redistribution process in systems of largeN is
determined by the lower bound of resonance detuning
uDvumin . As uDvumin decreases, energy redistribution
changes from being bounded to diffusion. In systems of large
N, uDvumin is likely to be small because there are many
combinations ofDvm . Therefore diffusion is likely to domi-
nate the energy redistribution process. However, because the
diffusion rate is independent ofuDvumin , once uDvumin is
sufficiently small for diffusion to occur, it does not make
much difference to have an even largerN. Therefore, for a
given perturbationeH1, in a rough sense there exists a
threshold number of degrees of freedomNth such that the
energy redistribution changes its nature from being bounded
to diffusion asN crossesNth . To clarify the role ofN we
shall now discuss the relationship betweenuDvumin andN by
calculating the expectation value ofuDvumin .

For any particular mP$m8% the probability of
uDvmu.y is

12E
uxu<y

P~x!dx. ~3.1!

BecauseN($m8%)52434!3C4
N and every 4! of theDvm

~hence every 234! of the uDvmu) has only one value, the
probability of uDvumin>y, defined asG(y), is

G~y!5F12E
uxu<y

P~x!dxG23C4N. ~3.2!

Therefore the probability density foruDvumin5y is 2G8(y)
and the expectation value ofuDvumin is

E
0

`

y@2G8~y!#dy52yG~y!u0
`1E

0

`

G~y!dy5E
0

`

G~y!dy.

~3.3!

Let c be sufficiently small such that wheny<c,

lnG~y!523C4
NlnF12E

uxu<y
P~x!dxG

'23C4
NF2E

uxu<y
P~x!dxG

'23C4
NF2E

uxu<y
P~0!dxG

5224C4
NP~0!y. ~3.4!

From Eq.~3.4! one has

E
0

`

G~y!dy'E
0

c

exp@224C4
NP~0!y#dy1E

c

`

G~y!dy

5
1

24C4
NP~0!

$12exp@224C4
NP~0!c#%

1E
c

`

G~y!dy. ~3.5!

For systems of largeN, exp@224C4
NP(0)c#!1 can be ne-

glected. DefineQ(y)[12* uxu<yP(x)dx. Then

E
c

`

G~y!dy5E
c

`

@Q~y!#2
3C4

N
dy

<@Q~c!#2
3C4

N
21E

0

`

Q~y!dy, ~3.6!

where*0
`Q(y)dy is the expectation value ofuDvmu, which

is finite and independent ofN. Because Q(c),1,
Q(c)M!1/M for sufficiently large M . Hence
*c

`G(y)dy!1/@24C4
NP(0)# for sufficiently largeN. For sys-

tems of largeN the expectation value ofuDvumin is then
approximately

uDvumin'
1

24C4
NP~0!

. ~3.7!

This relation shows howuDvumin scales withN. It is approxi-
mately equal to the inverse probability density 1/P(0) di-
vided by the number of frequency combinations 24C4

N .
Now that the dependence ofuDvumin on N is known, we

are in a good position to estimateNth . Substituting Eq.~3.7!
into Eq. ~2.18!, the condition for energy localization is

B5

Ac2S e2 (
mP$m8%

Vm
2 ~ I !D @24C4

NPP~0!#

uI u
!1. ~3.8!

Again, to carry out the estimation we replaceuI u by
uI u'H0 /(ANvav), and noting thatc2'O(10), P(0)>P/p,
P'1/V, ande2(Vm

2 '2e2H1
2 , Eq. ~3.8! yields

N5/2S vav

V D S ueH1u
H0

D!1. ~3.9!

For simplicity let us require that the left-hand side of Eq.
~3.9! equalsc4, wherec4 is of the order 0.1. Then we have
an estimation ofNth ,

Nth5c4
2/5S V

vav

H0

ueH1u
D 2/5'0.4S V

vav

H0

ueH1u
D 2/5. ~3.10!

IV. TIME SCALE FOR EQUIPARTITION

The foundation of the equipartition principle in dynamics
is an old problem. The emergence of the KAM theorem has
made it more puzzling. In the high-energy limit where the
motion is highly chaotic, it is relatively easy to appreciate the
equipartition principle. In the intermediate energy range,
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where the motion is partially chaotic, Arnold diffusion pro-
vides a possible mechanism for equipartition. In the low-
energy limit where regular motion is expected, it is more
difficult to relate the equipartition principle to dynamics. The
problem actually lies in the fact that our intuition of dynam-
ics often comes from systems of smallN. In Secs. II and III
we showed that ifN.Nth , energy diffusion is likely unin-
hibited. From the fact that in an isolated system the simplest
steady-state solution of the diffusion equation is a constant,
one expects that given sufficient time, equipartition will be
reached. In other words, if the action distribution will ever
reach a steady state, the state should be an equipartition state.

In experiment, Fermi, Pasta, and Ulam employed one of
the earliest electronic digital computers to study the problem
@6#. Although they did not find any evidence of energy equi-
partition, their results stimulated many subsequent works in
theory as well as in numerical experiment@13#. In early nu-
merical works the lengths of integration were limited by the
speed of the computers; hence, if equipartition was not
found, one could always suspect that the result may be dif-
ferent with a longer integration time. Regardless of the true
reason behind the original FPU results, recent simulations by
Pettini and Landolfi@14#, Goeddeet al. @15#, and Kantzet al.
@16# have revealed strong evidence of near equipartition. Us-
ing a CRAY-XMP supercomputer, Pettini and Landolfi stud-
ied energy redistribution in the FPUb model and thef4

model with wide ranges of parameters. They were able to
observe near equipartition in all the cases they studied as
long as the integration time is sufficiently long.

From the discussion above it is clear that the important
question is actually how long one has to wait before the
system reaches equipartition. Will that occur while we are
still interested? Armed with Eq.~2.20!, one can estimate the
time scale for reaching equipartition. Consider the typical
distanceR between two arbitrary points in the action space.
R'uI u, whereuI u is the average value ofuI u. To ensure that
diffusion has filled up approximately the whole action space,
let us define the time scale for equipartitionTe to be the time
it takes for the diffusion to reach twice of the typical dis-
tance; thenTe'(2uI u)2/D, whereD is the diffusion rate in
Eq. ~2.21!. From Eqs.~2.23! and ~2.24! one obtains

Te'
1

2pNvav
2 P~0!

H0
2

e2H1
2 . ~4.1!

Note that in Eq.~4.1! theN dependence is not as simple as it
appears because the ratioH0 /ueH1u may also depend onN.
For example, consider the potential energy of the FPUb
Hamiltonian@see Eq.~A6!#

U5(
i51

N
1

2
~Dqi !

21
1

4
b(
i51

N

~Dqi !
4. ~4.2!

If the total energy of the system isE, thenDqav
2 , the average

value of Dqi
2 , is approximatelyE/N and Dqav

4 'E2/N2.
Hence

H0

ueH1u
'

E/N

~b/4!~E2/N2!
5
4N

bE
. ~4.3!

If we keepE/N fixed, Te}1/N. But if we keepE fixed, Te
}N. This is exactly the scaling law Kantzet al. discovered
in their simulation of the FPUb model with fixedE andb
@16#.

Not only the scaling lawTe}N, but Eq. ~4.1! actually
reproduces the time scale for equipartition observed in Ref.
@16#. Before we proceed further with the comparison, let us
evaluatevav andP(0) first. In Ref.@16# v i52sin(pi/N). The
average valuevav is approximately 1.27 andP(0) is ap-
proximately 0.15, as estimated in Appendix B. Substituting
vav, P(0), b50.1, andE510, the step width 0.04/AE as
stated in Ref.@16#, into Eq. ~4.1!, with the scaling relation
Eq. ~4.3! one has

t

N
5

Te

~0.04/A10!N
'

$1/@2pNvav
2 P~0!#%@4N/~bE!#2

~0.04/A10!N
'832.

~4.4!

This agrees well with the time scale shown in Fig. 2 of Ref.
@16#.

Pettini and Landolfi have studied the dependence ofTe on
the average energy per degree of freedomE5E/N (e in their
notation! for differentN @14#. They obtained the time scale
for equipartition (tR in their notation! from the decay curve
of the ‘‘spectral entropy’’h, which is a natural indicator of
the degree of equipartition. The simulations were carried out
for both the FPU and thef4 model with a wide range of
E. The same formula Eq.~4.1! reproduces all the data in Ref.
@14# for which E satisfies the condition of weak perturbation
Eq. ~2.25!. The comparison is shown in Table I. There is an
intrinsic uncertainty in determiningtR due to the slow decay
of h near equipartition. Taking into account this intrinsic
uncertainty, the agreement betweentR andTe is remarkable.

Goeddeet al. have also investigated the time scale for
equipartition for thef4 model with numerical simulation
@15#. However, in their simulationueH1u/H0'1, which is
too large for our analysis to be valid. Therefore we are not
able to make a similar comparison with their numerical re-
sults.

TABLE I. Comparison with numerical simulations from Ref.@14#. lntR , numerical results, lnTe , calcu-
lated values.

N5128 N5256 N5512
lnE 26.5 25.9 25.2 24.6 24.2 23.8 26.2 25.5 24.4 25.6 25.0

lntR 14.3 13.0 12.3 10.9 10.5 9.6 14.2 12.3 10.6 12.4 11.5
lnTe 15.1 13.9 12.5 11.3 10.5 9.7 13.8 12.4 10.2 11.9 10.7
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It should be noted that the comparisons above are done
without any fitting parameter. The remarkable accuracy of
Eq. ~4.1! strongly supports our thesis, namely, small reso-
nance detunings in systems of largeN is the basis of equi-
partition in the low-energy limit.

Confusion regarding the limit ofN→` may arise. Does
equipartition always happen in systems of largeN? If yes,
how should one look at the regular motion of a nonlinear
string, such as the continuum limit of the FPUb model and
the f4 model? To answer such questions, one must distin-
guish the continuum limit from the thermodynamic limit. In
the continuum limit letN→` while keeping the energyE
constant. In such casesH0 /ueH1u is of orderN andTe}N.
Therefore, in practice, equipartition will never occur. This
can be traced back to the diffusion rateD in Eq. ~2.21!.
BecauseD}e2H1

2, as E/N approaches zero,D also ap-
proaches zero. Even though diffusion is allowed because
uDvumin→0, the diffusion rate is too small to bear any prac-
tical significance. On the contrary, in the thermodynamic
limit E/N is kept constant asN→`. In such cases
H0 /eH1 remains roughly constant andTe}1/N. Equiparti-
tion can occur in practical time scales.

V. DISCUSSION

In Sec. II it is seen that in the low-energy limit the energy
redistribution process shifts from bounded motion to diffu-
sion asuDvumin approaches zero. BecauseuDvumin decreases
rapidly with increasingN, as shown in Sec. III, we expect
that in systems of largeN energy diffusion always occurs,
even in the low-energy limit where from casual inspection of
the Hamiltonian the nonlinear couplings look unimportant.
The conclusion above is not a surprise. Long ago Ford and
Lunsford had given the following Hamiltonian as an ex-
ample, in which the erratic dynamics is independent of the
strength of perturbationg. Only the time scale for observing
the erratic dynamics changes withg @17#:

H5J112J213J31g@aJ1J2
1/2cos~2u12u2!

1b~J1J2J3!
1/2cos~u11u22u3!#. ~5.1!

The example above is somewhat unnatural because the
chance of having three frequencies of the exact ratio 1:2:3 is
very small. Nevertheless, it carries some spirit of the basic
idea presented in this paper: Small detunings make weak
perturbation important. By replacing the unnatural require-
ment of exact resonance with a statistical distribution of de-
tunings, the role of resonances in the energy redistribution
becomes clear and relations amongN, ueH1u/H0, uDvumin ,
D, andTe also become apparent.

We also noted in particular the importance ofTe when
discussing equipartition. We showed that even though small
uDvumin makes energy diffusion possible, it does not guaran-
tee that equipartition will be reached in practical time scales.
In particular, we used the FPUb model and thef4 model to
show that low energy elastic waves in continuous media do
not contribute to equipartition because energy diffusion
caused by such motions is too slow to be of practical signifi-
cance.

Our analysis can be readily generalized to other Hamilto-
nians. For example, iff6 instead off4 was the dominant

interaction, we would have( i51
N umi u<6 in Eq. ~2.1! and

uDvumin becomes proportional to 1/C6
N . Consequently,Nth

scales as (H0 /ueH1u)2/7, while the general form ofD and
Te remains the same.

It should be noted that even though our analysis is meant
to be used on nonintegrable Hamiltonians, questions may
arise. For example, what would happen if the Hamiltonian
only appears to be nonintegrable? There are classes of non-
linear Hamiltonians that are actually integrable. If we treat
the nonlinear part of those Hamiltonians as perturbation, it is
still possible to see ‘‘apparent’’ diffusion. Yet in such cases
the motion of different degrees of freedom is correlated in
such ways that with proper sets of variables the static nature
of the motion can be revealed. Nevertheless, if one wishes to
describe the motion in terms of linear mode expansions, the
perturbation picture is still valid. It bears a close analogy to
the interaction picture in quantum mechanics.

The theory presented in this paper can be readily extended
to quantum mechanics. Letci be the probability amplitude of
a system in statei . Then uci u2 corresponds to the classical
action variableI i and the phase angle ofci corresponds to
the angle variableu i . The evolution ofuci u2 is governed by
an equation similar to Eq.~2.4!; hence using our method, one
can analyze probability diffusion in quantum systems in a
similar way. Such an analysis can be used to elucidate the
dynamic basis of quantum microcanonical ensemble theo-
ries. We plan to present such an analysis in future papers.
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APPENDIX A

The FPUb model is the discrete version of the nonlinear
partial differential equation

]2y

]t2
2

]2y

]x2 F113bS ]y

]xD
2G50. ~A1!

It is one of the nonlinear models Fermi, Pasta, and Ulam
studied with an early digital computer. Discretizing the con-
tinuous function y(x) in Eq. ~A1! into a vector
(y1 , . . . ,yN) and substituting in

3S ]y

]xD
2

5
~yi112yi !

2

~Dx!2
1

~yi2yi21!
2

~Dx!2

1
~yi112yi !~yi2yi21!

~Dx!2
, ~A2!

]2y

]x2
5
yi1122yi1yi21

Dx2
, ~A3!

whereDx5L/N andL is the length of the string, Eq.~A1!
becomes
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ÿi5
yi1122yi1yi21

~Dx!2 H 11bF ~yi112yi !
2

~Dx!2
1

~yi2yi21!
2

~Dx!2

1
~yi112yi !~yi2yi21!

~Dx!2 G J
5
yi1122yi1yi21

~Dx!2
1bF ~yi112yi !

3

~Dx!4
2

~yi2yi21!
3

~Dx!4 G .
~A4!

Letting qi5yi andpi5 ẏi , one has

q̇i5pi ,

ṗi5
1

~Dx!2
~qi1122qi1qi21!

1
b

~Dx!4
@~qi112qi !

32~qi2qi21!
3#. ~A5!

From the above equations one obtains the Hamiltonian

H5(
i51

N F12 pi21 1

2

1

~Dx!2
~qi112qi !

2

1
1

4

b

~Dx!4
~qi112qi !

4G ~A6!

5
1

2(i51

N

pi
21

1

2 (
i , j51

N

Ai j qiqj

1
1

4

b

~Dx!4(i51

N

~qi112qi !
4, ~A7!

where the periodic boundary conditionqn115q1 is used,
Ai j5(2d i , j2d i , j112d i , j21)/Dx

2, andd i , j is the Kronecker
delta. SettingSi j51/AN@cos(2pij /N)1sin(2pij /N)#, we can
diagonalize the matrixA5(Ai j ) with S5(Si j ) such that

SAS215S v1
2

�

vN
2
D , ~A8!

where all but the diagonal matrix elements are zero,
v j
254sin2@(1/2)kj #/Dx

2, kj52p j /N, and S5S21. Making
the canonical transformP5Sp andQ5Sq,

H5
1

2(j51

N

Pj
21

1

2(j51

N

v j
2Qj

2

1
1

4

b

~Dx!4(i51

N F (
j51

N

~Si11,j2Si , j !Qj G4. ~A9!

Change the variables (Q,P) to the action angle variables
(I ,u) with

1

2
Pj
21

1

2
v j
2Qj

2[Ej , ~A10!

I j[
1

2p R PjdQj5
2

pE0
Qmax

~2Ej2v j
2Qj

2!1/2dQj5
Ej

v j
,

~A11!

whereQmax5(2Ej)
1/2/v j is the value ofQj whenPj50. The

generating functionF(Q,I ) can be obtained from

Pj5
]

]Qj
F~Q,I ! ~A12!

to be

F~Q,I !5(
j51

N E
0

Qj
PjdQj5(

j51

N E
0

Qj
~2Ej2v j

2Qj
2!1/2dQj

5(
j51

N E
0

Qj
~2v j I j2v j

2Qj
2!1/2dQj . ~A13!

From the generating function one obtains the angle variables

u j5
]

]I j
F~Q,I !5v jE

0

Qj
~2v j I j2v j

2Qj
2!21/2dQj

5arcsinF S v j

2I j
D 1/2Qj G . ~A14!

Substituting

1

2
Pj
21

1

2
v j
2Qj

25Ej5v j I j , ~A15!

Qj5S 2I jv j
D 1/2sinu j ~A16!

into the Hamiltonian, one obtains

H5(
j51

N

v j I j1
b

~Dx!4(i51

N F (
j51

N

~Si11,j2Si , j !S I jv j
D 1/2sinu j G4.

~A17!

Essentially the same procedure can be applied to dis-
cretize the sine-Gordon equation in the low-energy limit for
thef4 model. Substituting Eq.~A3! into

]2y

]t2
2

]2y

]x2
1gsiny50 ~A18!

and settingqi5yi andpi5yi̇ , one obtains the Hamiltonian

H5
1

2(i51

N

pi
21

1

2 (
i , j51

N

Ai j qiqj1g(
i51

N

~12cosqi !,

~A19!

with Ai j defined as before. In the low-energy limitqi is very
small, hence
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H'
1

2(i51

N

pi
21

1

2 (
i , j51

N

Ai j qiqj1
g

2(i51

N

qi
22

g

4!(i51

N

qi
4

5
1

2(i51

N

pi
21

1

2 (
i , j51

N

Ãi j qiqj2
g

4!(i51

N

qi
4 , ~A20!

where Ãi j5Ai j1gd i , j . Similarly, we can diagonalize the
matrixA5(Ãi j ) with S defined before:

SAS215S v1
2

�

vN
2
D , ~A21!

wherev j
254sin2@(1/2)kj #/Dx

21g and kj52p j /N. Chang-
ing the variables toP5Sp andQ5Sq, and then changing
them to the action angle variables (I ,u) as done before for
the FPUb model, one has

H5(
j51

N

v j I j2
g

3!(i51

N F (
j51

N

Si , j S I jv j
D 1/2sinu j G4. ~A22!

Because

sinu jsinuksinu lsinum5 (
n1 ,•••,n4561

~21!n1•••n4

16

3cos~n1u j1n2uk1n3u l1n4um!,

~A23!

both the FPUb Hamiltonian and thef4 Hamiltonian can be
written in the form

H5(
j51

N

v j I j1e (
1< j ,k,l ,m<N

(
n1 , . . . ,n4561

Vn1•••n4
jklm ~ I !

3cos~n1u j1n2uk1n3u l1n4um!, ~A24!

where we have introduced the dimensionless parameter
e5b/L2 for the FPUb model ande5gL2/3! for the f4

model, and

Vn1•••n4
jklm ~ I !5

~21!n1•••n4

16 S (
i51

N

Cj
iCk

i Cl
iCm

i DAI jAI kAI lAI m,
~A25!

with Cj
i5N(Si11,j2Si , j )/Av jL for the FPUb model and

Cj
i5Si , j /Av jL for the f4 model. The perturbation

part Vn1•••n4
jklm (I ) contains 243N4 terms. With

m[(m1 , . . . ,mN), u[(u1 , . . . ,uN) and (m•u)[
( i51

N miu i one has

H5(
j51

N

v j I j1e(
m

Vm~ I !cos~m•u!. ~A26!

From Eqs.~A22!–~A24! it is apparent that$m% consists of
all integer arrays (m1 , . . . ,mN) with ( i51

N umi u<4.

APPENDIX B

Lemma 1.uGu<12c1P/V.
Proof. Because 0< f (x,DT)5@12cos(xDT)#/x2<2/x2

and 0<P(x)<P, the second term in Eq.~2.11! is bounded
by

U2E
V/c1

`

f ~x,DT!P~0!dxU<4PE
V/c1

` 1

x2
dx54

c1P

V
.

~B1!

Similarly, the last term in Eq.~2.11! is bounded by

U E
V/c1<uxu<uDvumax

f ~x,DT!P~x!dxU
<2PE

V/c1<uxu<`

1

x2
dx54PE

V/c1

` 1

x2
dx54

c1P

V
.

~B2!

From Eq. ~2.10!, uP(2k)(0)u<P(c1 /V)2k, the third term in
Eq. ~2.11!, is bounded by

U2E
uDvumin

V/c1
f ~x,DT!F (

k51

`
P~2k!~0!

~2k!!
x2kGdxU

<4E
0

V/c1 1

x2 F (k51

`
P

~2k!! S c1V D 2kx2kGdx
54

c1P

V (
k51

`
1

~2k!! ~2k21!
<4

c1P

V
. ~B3!

Thus the sum of the last three terms in Eq.~2.11!, which is
called G, has the absolute value less than or equal to
12c1P/V.

Lemma 2.pP(0)>P.
Proof.Defining p(x)dx to be the probability of any par-

ticular v i falling in the interval (x2 1
2 dx,x1 1

2dx), i.e.,
p(x) is the distribution ofv i , thenP(Dvm) can be derived
from p(x) by convolution. Because the convolution depends
on the numbers ofmi that are11 and21, respectively, for
convenience of discussion we separate$m8% further into five
subsets:$m8%5øs50

4 $ms%, with $ms%5$m:s of themi are
11, 42s are21, and the rest are 0%. Letting Ps(Dvm) be
the distribution of Dvm for mP$ms% because
N($ms%)5Cs

434!3C4
N and N($m8%)5(s50

4N($ms%)
52434!3C4

N ,

P~Dvm!5(
s50

4 Cs
4

24
Ps~Dvm!. ~B4!

To avoid any possible misunderstanding of the meaning of
Ps(Dvm), let us write out P2(Dvm) explicitly. For m
P$m2%, twomi are11, two are21, and the rest are 0, i.e.,
Dvm5v11v22v32v4. The probability distribution of
Dvm in $m2% is
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P2~Dvm!5E E E p~v11v22v32Dvm!

3p~v1!p~v2!p~v3!dv1dv2dv3 . ~B5!

Other Ps(Dvm) can be derived by convolution ofp(x) in
similar ways. Because the convolution involves fourv i ,
from the central limit theorem in probability theory@18#, the
widths of all thePs(x) are approximatelyA4w, wherew is
the width ofp(x). Because the product of the height and the
width of a probability distribution is approximately 1, the
heights of all thePs(x) also have approximately the same
value. As we shall see in the following paragraph, the value
is justP2(0).

Defining

g~y![E p~y1v!p~v!dv, ~B6!

then

g~2y!5E p~2y1v!p~v!dv

5E p~v8!p~y1v8!dv85g~y!. ~B7!

Settingy5v32v2, one has

P2~x!5E E E p~v11v22v32x!

3p~v1!p~v2!p~v3!dv1dv2dv3

5E E E p~v12y2x!p~v1!p~v2!

3p~y1v2!dv1dv2dy

5E g~2y2x!g~y!dy5E g~y1x!g~y!dy.

~B8!

Hence

P2~0!5E g2~y!dy ~B9!

and

P2~x!<S E g2~y1x!dyD 1/2S E g2~y!dyD 1/2
5E g2~y!dy5P2~0!. ~B10!

Equation ~B10! shows thatP2(0) is the maximum~the
height! of P2(x); hence in a crude sensePs(x)<P2(0) for
all s. Because

P~x!5(
s50

4 Cs
4

24
Ps~x!<(

s50

4 Cs
4

24
P2~0!5P2~0!, ~B11!

the height ofP(x) is smaller thanP2(0), i.e., P<P2(0).
Therefore

pP~0!5p(
s50

4 Cs
4

24
Ps~0!>

pC2
4

24
P2~0!>P. ~B12!

Lemma 3.For v i52sin(pi/N), P(0)'0.15.
Proof.The average value ofv i is vav'1.27 and the stan-

dard deviation ofp(x) ~the distribution ofv i) is s'0.62.
Hence the width ofp(x) is w'230.6251.24. We know
from Lemma 2 that for alls the width ofPs(x) is approxi-
mately A4w and the height ofPs(x) is approximately
P2(0). Because the product of the height and the width of a
probability distribution is approximately 1,
P2(0)'1/A4w'0.4. Similar to the above proof that the
maxima ofP2(x) happens atx50, one can show that the
maximums ofP0(x), P1(x), P3(x), and P4(x) happen at
x524vav, 22vav, 2vav, and 4vav, respectively. Since
the standard deviations of thePs(x) are all approximately
A4s51.24'vav, x50 is at least two standard deviations
away from the peak forsÞ2. ThereforePs(0) for sÞ2 are
very small. We have

P~0!5(
s50

4 Cs
4

24
Ps~0!'

C2
4

24
P2~0!50.15. ~B13!
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